US009258379B2

a2 United States Patent

Jansson et al.

US 9,258,379 B2
Feb. 9, 2016

(10) Patent No.:
(45) Date of Patent:

(54) SESSION INITIATION PROTOCOL ADAPTER
SYSTEM AND METHOD PROVIDING
STATELESS NODE MAPPING TO A
STATEFUL SERVER NODE HOSTING A

(58) Field of Classification Search
USPC 709/227-228, 230
See application file for complete search history.

COMMUNICATION SESSION FOR AN ACTOR ~ (56) References Cited
(75) Inventors: Andreas Jansson, San Francisco, CA U.S. PATENT DOCUMENTS
Li, Baig (N Vidky Lin Being . T ns b1 iy S
] El] N N et al.
(CN); Tao Ma, Beijing (CN); Peng Liu, 7,593,980 B2 9/2009 Marascio et al.
Beiing (CN): Ting Low, Bejing (N); 203004208 A1 1200 Hlnng .
. asati et al.
Zun Wu, Beijing (CN); Yun Gao, 2006/0074805 Al 4/2006 Svedsen et al.
Beijing (CN) 2006/0294417 Al 12/2006 Awasthi et al.
2007/0240166 Al 10/2007 Marappan
(73) Assignee: ORACLE INTERNATIONAL 2007/0294577 Al 12/2007 Fiske
CORPORATION, Redwood Shores, 2009/0260021 Al 10/2009 Haenel et al.
CA (US) 2009/0327929 Al 12/2009 McCoy
2010/0017503 Al 1/2010 Kim et al.
. 2011/0029812 Al* 2/2011 Luetal. ...cccoeevvrvrnnenenn. 714/18
(*) Notice: Subject to any disclaimer, the term of this 2011/0252127 AL* 102011 Iyengar etal. 700/224
patent is extended or adjusted under 35 2011/0302570 A1 12/2011 Kurimilla et al.
U.S.C. 154(b) by 912 days. * cited by examiner
(21) Appl. No.: 13/339,300 Primary Examiner — Jason Recek
(22) Filed: Dec. 28, 2011 (74) Attorney, Agent, or Firm — Tucker Ellis LLP
(65) Prior Publication Data (7 ABSTRACT
In accordance with various embodiments, a set of features are
US 2012/0210012 Al Aug. 16,2012 described for enabling an application server platform for
Related U.S. Application Data tele;com based applications. A system for.providing an appli-
cation server for telecom-based applications can include an
(60) Provisional application No. 61/428,129, filed on Dec. application server that includes a session initiation protocol
29, 2010, provisional application No. 61/432,554, (SIP) adapter. The SIP adapter can use a connection oriented
filed on Jan. 13, 2011. protocol and provides interactions with application code in an
actor of said application server by means of asynchronized
(51) Int.CL SIP protocol events. The SIP adapter can also provide state-
GO6F 15/16 (2006.01) less node mapping to a stateful server node hosting a specific
HO4L 29/08 (2006.01) session for the actor.
(52) US.CL
CPC .o, HO4L 67/2809 (2013.01) 20 Claims, 8 Drawing Sheets
™
-
0OSGI 102
| |
| n A B on C |
114 116 118 |
|
| . _
- - _ _ J
[Event Framework Layer 106]
sz |
| Actor Container 108]
- J
l’____Ep.er_amJerm____W
| |
| sp INAP HTTP Protoo |
130 132 134 Adapters |
136
D N W _J
\ J

U.S. Patent Feb. 9, 2016 Sheet 1 of 8 US 9,258,379 B2

o

()
0SGl 102
e N T]
Application A Application B Application C |
114 116 118 |
Application Component Environment 104
— Y,
Event Framework Layer 106 J
Server
Services 112
| Actor Container 108]
— J
~ 3
| Adapter Container 110

| Other |

| SIP INAP HTTP Protocol
130 132 134 Adapters |

136
- |\ Y,
. J

FIGURE 1

US 9,258,379 B2

Sheet 2 of 8

Feb. 9, 2016

U.S. Patent

Z 34N9I
oBIS /SS 31 S 1INV —{] sayy Luse zdeo
/N \-02Z oLz gLz
4 194008 |)
POTN
¢ Joydepe [020j01d | ,“
| [Bwog>pes J[rioppeisdeor | [
m 902 || .
“ | sjuswa|dwil
m 80IAIBG|000J0IBS NI i b-mmmmmmmmmmommod aoInlagzde)
| (uESENSWIUNY | | ueag
m |dwpaydepydeay -r-----o--o m (0opo9)buiddeyy Jusag zded
m m . (zdepBe)
m Buiddejyjuangdea] = | i E 1oke| |0ooj0.d Jasn 9|
| | i | N\
E__ocm_._“cgm_%u 1l :SISA0JSIP 5 co¢
_ E > g0z SJ9]SI m,_
e S m y
(guangpunogindes (quengpunoquidea] | m
Spuaixa | >)iusAgjuo m mﬁmwcoym% vamw___%% <
! \V4 | _
19)0IgIUSAT oo > Ajsibay 8o1A8S 9SO
712 \vLg
X002

U.S. Patent Feb. 9, 2016

300~

Sheet 3 of 8

US 9,258,379 B2

start]

stop

Bundle ACTIVE

(Registered } %2

prepare

unprepare

399" Admin

resume

forceSuspend

]< suspendComplete

308

N/
306\[Running }

| Suspending |

\.

suspend

FIGURE 3

400
r 401~

cmp 405~

EB | 404

/

(5)register

(1) bundle start

402

/

(2) discovers
(3) create
(4) prepare

403~

PAC

408
'd 409~

(7*) bundle start

Cap2 Layer

407

TcapAdapter Bundie H ManagementService
(6)registers

Bbind~_,. 4b

FIGURE 4

U.S. Patent Feb. 9, 2016 Sheet 4 of 8 US 9,258,379 B2
cmp
511 EB
(6) publish—">1°
S99\ [TcapEventHandler 5/06
505" (O PUDISh] 505 (4) decode (907
504 TcapEventMapping Cap 2 Layer
3) ge\nerate TcapDialogueFsm |~ 503
502
501~ (2) process "
Tcap Stack for TE
(1) receives ~500
FIGURE 5
) co0 o002 604
Efalcon 606 Efalcon 608 falcon 610
L Actor)i i Ador)i i Actor]
_______ SRS U A R S 2 O ISR DU
612~ |_ 614\|_ (M 1 622 616\]- EBE
TcapAdapter (2% ' TcapAdapter
__ e e e e s
X
(3) """""""""""""" 6 '2'()'"§ TCP/P
TE-BE1 ! TE-BE2
TE node1 TE node2
FIGURE 6

US 9,258,379 B2

Sheet 5 of 8

Feb. 9, 2016

U.S. Patent

L 3EN9Id

7opou 31 Jopou 31

(2) w

c39-31 EEEN |

w ™ T \o0zs \oz. |

....................... xezz |||

diidOL /m\ﬁ

Ja)depydeo| Ja)depydes| Ja)depydes|
w NolL “yLL 577 || Nz
B T I U
I A [
ey) ew) G (C _wowy)
| C ¥ < i \ i
| 0L uoofey | 802 uoofey | ! 902 uoole |
............................. “yoo Ngoz o0

US 9,258,379 B2

Sheet 6 of 8

Feb. 9, 2016

U.S. Patent

8 NI 218 208
\\ \\
oza Al ONsN sulbu3 ai09 anpojy
oL A a|npojy Hodsuel] 491 Hodsued] 4an
oo _onuopuonoauuog)isBeueyyuooauvog]joodieuey)dpn e ﬁm_,_h:w»xe
skt “pL8 QL8 N X0l ~008
nn Jo|pueHusa3dig 808 thmwmm_ﬁ
uoneanbiyuo J
feINDYUD || 1908 wargpesds| pog 1 J9|npayagiuangdig
' A
: i WeAPRBISUS | (360011
uone.nfijuon Joyoigiuead sedepy|00010igdig
............................. WoArIgdig | ueayorgdiS.
D s 1a|pUBHaBESSA|I01DY \A\ ¢es
sofe
H JebeuepjaleIS|eD Jobeugyuonoesuel| co_smmm_e |
828 028
peg| UOMESUBIBARS | UOROBSUBLRI) N zeg
................ I [hogls | wssesss | ||| |
ocg—1 8cg—’ 3jelS|e) \9¢g “M_MMM m_mw:
- buiddejyjusazdis . L
0¥78— ¥
JusA3dig yluenddis | Aiojoeqiusagdig
1010y v,
Zv8

U.S. Patent Feb. 9, 2016 Sheet 7 of 8 US 9,258,379 B2
prepare
900~ 902~ esume 22
(_DLE) ((PREPARED SUMC S ACTIVE)
unprepare
Akt force-suspend suspend
906~
(SUSPENDING |
FIGURE 9
1002~ pmeemmmeseeeeeon
Configuration MBeans
| Configuration JAXB POJO Runtime
1004~ MBeans
ConfigurationUtil Configuration Adapter
[}))) 1000~ 1}
\ Y \j
Transport/
Transaction Layer
ConfigurationUpdateListener | | ConfigurationUpdateListener

FIGURE 10

U.S. Patent Feb. 9, 2016 Sheet 8 of 8

------ » |nitial event

<«— Subsequent
events

Session Session

Handling Handling
Actor Actor

US 9,258,379 B2

Session

Handling
Actor

Router
Actor
1108\ \ J Y Y
Event Broker
FIGURE 11
1200~ 1202~
Protocol Event Protocol Event
Factory Factory
1212
\
Protocol
Consumer
1204~ y A Y
Protocol Protocol Protocol
Binding Binding Binding
onBind()—" 12 onBind() onBind()
\ A \ 4
1208 1210
Actor Actor

FIGURE 12

US 9,258,379 B2

1
SESSION INITIATION PROTOCOL ADAPTER
SYSTEM AND METHOD PROVIDING
STATELESS NODE MAPPING TO A
STATEFUL SERVER NODE HOSTING A
COMMUNICATION SESSION FOR AN ACTOR

CLAIM OF PRIORITY

This application claims the benefit of priority to U.S. Pro-
visional Patent Application No. 61/428,129, titled
“IMPROVED APPLICATION SERVER PLATFORM FOR
TELECOM-BASED APPLICATIONS”, filed on Dec. 29,
2010; and U.S. Provisional Patent Application No. 61/432,
554, titled “APPLICATION SERVER PLATFORM HAV-
ING A DEPLOYMENT MANAGEMENT SERVICE, CON-
FIGURATION SERVICE, TCAP ADAPTER, SIP
ADAPTER AND A JAVA MEDIA SERVER CONTROL-
LER?”, filed on Jan. 13, 2011; each of which applications are
herein incorporated by reference.

CROSS REFERENCE TO RELATED
APPLICATIONS

The present application is related to U.S. patent application
Ser. No. 13/339,252, titled “IMPROVED APPLICATION
SERVER PLATFORM FOR TELECOM-BASED APPLI-
CATIONS USING AN ACTOR CONTAINER”, filed on
Dec. 28, 2011 ; and U.S. patent application Ser. No. 13/339,
287, titled “AN EVENT BROKER FOR AN IMPROVED
APPLICATION SERVER PLATFORM FOR TELECOM-
BASED APPLICATIONS?, filed on Dec. 28, 2011 ; each of
which applications are herein incorporated by reference.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document con-
tains material which is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
file or records, but otherwise reserves all copyright rights
whatsoever.

FIELD OF INVENTION

The current invention relates to mobile communications
and in particular to providing application server platform for
applications that utilize telecom-based functionality.

BACKGROUND

In today’s world of telecommunications, more and more
devices and functionalities are being integrated with one
another in order to create new features and capabilities for the
everyday user, as well as for large organizations and enter-
prises. Numerous examples of this can be seen in the realms
of'mobile devices, cellular phones and computers. Everything
from electronic mail, internet access, text messaging, video
and digital photography to video games, social networking
and other forms entertainment, are becoming available for a
wide variety of mobile devices. Countless web applications
now provide services that can access or be accessed via
mobile phone to enable a particular feature.

Given all of this pervasiveness, the management of soft-
ware applications must expand in order to accommodate a
multitude of mediums and modes of operation previously
unconsidered by most developers. As a simple illustration, in

10

15

20

25

30

35

40

45

50

55

60

65

2

order to allow an internet user of a web application to set up
a conference telephone call between several end subscribers,
the application must be able to interact in some meaningful
way with multiple and substantially different protocols and
networks. This is the general environment within which
embodiments of the invention are intended to be used.

SUMMARY

The current invention relates to mobile communications
and in particular to providing application server platform for
applications that utilize telecom-based functionality. A sys-
tem for providing an application server for telecom-based
applications can include an application server that includes a
session initiation protocol (SIP) adapter. The SIP adapter can
use a connection oriented protocol and provides interactions
with application code in an actor of said application server by
means of asynchronized SIP protocol events. The SIP adapter
can also provide stateless node mapping to a stateful server
node hosting a specific session for the actor.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1is a functional illustration of an application server, in
accordance with various embodiments of the invention.

FIG. 2 is an illustration of an application server including a
TCAP adapter, in accordance with an embodiment.

FIG. 3 shows the TCAP Adapter Lifecycle, in accordance
with an embodiment. At 300, the lifecycle starts.

FIG. 4 shows TCAP adapter startup, in accordance with an
embodiment. At 400 the bundle 401 is started.

FIG. 5 shows publication of an outbound message, in
accordance with an embodiment.

FIG. 6 shows an example of fail over when a TCAP adapter
shuts down, in accordance with an embodiment.

FIG. 7 shows an example of fail over when a TE stack node
shuts down, in accordance with an embodiment.

FIG. 8 shows module a diagram of the modules of a SIP
adapter, in accordance with an embodiment.

FIG. 9 shows a diagram of lifecycle and integration with
PAC, in accordance with an embodiment.

FIG. 10 illustrates the architecture and layer behavior of an
SIP adapter, in accordance with an embodiment.

FIG. 11 shows a protocol router, in accordance with an
embodiment.

FIG. 12 illustrates the usage of protocol binding and pro-
tocol consumer, in accordance with an embodiment.

DETAILED DESCRIPTION

In the following description, the invention will be illus-
trated by way of example and not by way of limitation in the
figures of the accompanying drawings. References to various
embodiments in this disclosure are not necessarily to the
same embodiment, and such references mean at least one.
While specific implementations are discussed, it is under-
stood that this is provided for illustrative purposes only. A
person skilled in the relevant art will recognize that other
components and configurations may be used without depart-
ing from the scope and spirit of the invention.

Furthermore, in certain instances, numerous specific
details will be set forth to provide a thorough description of
the invention. However, it will be apparent to those skilled in
the art that the invention may be practiced without these
specific details. In other instances, well-known features have
not been described in as much detail so as not to obscure the
invention.

US 9,258,379 B2

3

In accordance with various embodiments, a set of features
are described for enabling an application server platform for
telecom based applications. The application server provides a
protocol-neutral programming model for application devel-
opers. Rather than having to account for specific protocol
entry points into the server, all interactions in the server are
abstracted as asynchronous events through the event broker
layer. State management and concurrency are implemented as
anactor-based model, where each actor owns its own segment
of state and other actors wishing to update that state send
asynchronous events to the owner. This architecture allows
multiple protocols to be consumed in one process, allow
applications sessions to span multiple environments and pro-
tocols, and allows the programming model to be decoupled
from any particular protocol entry point.

Glossary
In accordance with an embodiment, the following terms as

used herein are defined below:

Actor: An entity in the Actor Mode, with runtime properties
provided by the Actor Container.

Actor Container: Set of bundles and function responsible for
providing APIs and runtime environment for actor based
applications.

Actor Framework: Usually a synonym of Actor Container.

Actor Factory: Factory used to request creation of other
actors.

Actor Links: Hint that an actor being created is linked to the
creator and that optimizations on communication with it
would be greatly beneficial.

Actor Model: Mathematical model representing an event
based actor programming model through use of the actor
container.

Actor Store: Actor specific store with isolated view of data
written by this actor; see also Storage Service.

APE: See Actor Protocol Extension.

Actor Protocol Extension: Protocol adapter extension to
actors that send and/or receive events from mentioned Pro-
tocol adapter.

Bundle: OSGi bundle, deployment artifact consisting of jar
file with OSGi specific manifest properties.

Coherence: Oracle Coherence.

Declarative Services: OSGi compendium specification for
OSGi service dependency definition and injection.

Event Broker: System feature for managing events.

Event Channel: An abstraction for application events sent
from many to one subscribing actor over typed event chan-
nels; also the client side interface used to publish such
events.

Event Channel Factory: Factory used to create event channel
ports and open/subscribe handlers to event channels.

Event Channel Port: Template that can be used to reserve a
channel of a specified type to be opened at a later time,
possibly by another actor.

Event Channel Session: Session representing an open chan-
nel; this is used to later close and unsubscribe from the
channel.

Falcon: A particular embodiment of the event based platform
developed for OCCAS.

OCCAS: Oracle Communications Converged Application
Server, a product family that includes a SIP server.

OSGi: A set of service platform and framework specifica-
tions.

Protocol Extension: See Actor Protocol Extension.

Storage Service: feature managing cluster storage.

TCAP: User Protocol SS7 application protocols built upon
TCAP layer, eg. CAP2, MAP, INAP.

CAP: CAMEL Application Part.

10

15

20

25

30

35

40

45

50

55

60

65

4

MAP: Mobile Application Part.

ANTLR: BNF parser.

SSN: SubSystem Number of SS7.

SPC: Signal Point Code.

EB: Event Broker.

PAC: Protocol Adapter Container.

JAIN: Java APIs for Integrated Networks.

APE: Actor Protocol Extension, can be used interchangeably
with Actor Protocol Context.

API: Application Programming Interface.

OAM: Operating, Administration, Management.

SIP: Session Initiation Protocol.

PEF: Protocol Event Factory.

PA: Protocol Adapter.

PE: Protocol Extension.

PR: Protocol Router.

FIG. 1is a functional illustration of an application server, in
accordance with various embodiments of the invention.
Although FIG. 1 depicts components as logically separate,
such depiction is merely for illustrative purposes, and the
components illustrated therein can otherwise be combined or
divided into separate software, firmware and/or hardware.
Furthermore, such components, regardless of how they are
combined or divided, can execute on the same computing
device or can be distributed among different computing
devices connected by one or more networks or other suitable
communication means.

As illustrated in FIG. 1, in accordance with an embodi-
ment, the application server 100 can include an OSGI kernel
102, an application component environment 104, an event
framework layer 106, an actor container 108, an adapter con-
tainer 110, and a selection of server services 112.

The OSGI kernel provides lifecycle management, class
loading, dependency resolution and deployment features for
the application components on the server. In accordance with
an embodiment, the application components, such as appli-
cations 114, 116, 118, can be basic OSGI bundles deployed
on the server.

The event framework layer provides an event-based com-
munication model between the application component envi-
ronment and the adapter container. In particular, the frame-
work layer provides an event broker that maps all protocol-
specific communications exposed by the various protocol
adapters 130, 132, 134, 136 into asynchronous events, which
can be consumed by the application components. Addition-
ally, the application components can produce asynchronous
events for propagation to the protocol adapters via the event
broker.

The protocol adapters 130, 132, 134, 136 enable the appli-
cation server to support multiple protocols. In accordance
with an embodiment, each of a plurality of various protocols,
such as a session initiation protocol (SIP) 130, an intelligent
network application part (INAP) of the SS7 protocol 132, a
hypertext transfer protocol (HTTP) 134, or many other pro-
tocols 136, can have their own adapter. These protocol adapt-
ers then interface with the adapter container, the event frame-
work, the actor container and the server services. The adapter
container can expose a service provider interface, for use in
building new protocol adapters as new protocols emerge or
become more widely used.

In accordance with an embodiment, the event framework
layer is used to communicate with application components.
With respect to the event model, the protocol adapters are
consumers and producers of asynchronous events. The SPI
interfaces implemented by protocol adapters reflect the com-
plexity relative to application components. Primarily, adapt-
ers implement efficient input and output operations (1/O)

US 9,258,379 B2

5

towards a specific protocol. In addition, protocol-specific
security, error handling, and abstraction can be encapsulated
in adapters. The adapter container is designed to support a
contract in which it cooperates with the adapters to provide
connectivity to the network by the application components.

The server services act as basic building blocks for the rest
of'the functionality implemented on the application server. In
accordance with an embodiment, these services are protocol
neutral, reusable, and shared by the other layers of the stack.
The set of services illustrated in FIG. 1 is not intended to be
limiting or exhaustive, and is instead being provided for pur-
poses of illustration. In accordance with an embodiment,
various server services can be implemented as needed to
address the particular needs of an application developer. For
example, a clustering service can be used to maintain cluster
membership/replication, while an SLA management service
can be used to keep track of service level agreement (SLA)
enforcement.

TCAP Adapter

In accordance with an embodiment of the invention, the
application server platform can automatically generate pro-
tocol adapters (processors/translators) based on abstract lexi-
cal notation, such as Abstract Syntax Notation One (ASN.1).
For example, the application server platform includes a
Transaction Capabilities Application Part (TCAP) Adapter
that is based upon the TE TCAP stack. This TCAP adapter can
also support CAMEL Application Part (CAP)/Mobile Appli-
cation Part (MAP) and other TCAP user protocols by receiv-
ing ASN.1 files as input.

In accordance with an embodiment, the TCAP adapter
provides integration with the Protocol Adapter Container.
Additionally, the TCAP adapter can decode and encode CAP/
MAP/INAP, and encapsulate operations in unified TCAP lay-
out. The TCAP adapter can also automatically generate CAP/
MAP/INAP layers, using ASN1 files as input. The TCAP
Adapter works like a “container” to support CAP, MAP,
INAP or other customized TCAP user protocols. Further, the
TCAP adapter can transfer JAIN TCAP messages to applica-
tions as a TCAP event, and similarly can convert a TCAP
event to a JAIN TCAP message to be sent to network nodes.

FIG. 2 is an illustration of an application server including a
TCAP adapter, in accordance with an embodiment. As shown
in FI1G. 2, the application server 200 can include a CAP2 layer
202 and a TCAP adapter 204. The CAP2 layer is generated by
ANTLR with asnl files as input. The generated codes imple-
ment TCAPUserProtocolService and register it into an OSGi
Service Registry. The TCAP Adapter uses the OSGi Service
Registry to discover all TCAP user protocol services, and to
decode/encode protocols upon the TCAP layer. The TCAP
Adapter can include a TCAP stack 206 for TE which is the TE
client implementation. It can also include a TCAP event
handler 208 and TCAP event mapping 210 through which the
TCAP adapter can communicate with an event broker 212 to
publish and subscribe to specific events.

An event APl (TCAPOutboundEvent/TCAPInbound-
Event) is provided to facilitate communication between
applications and TCAP adapter. An additional API is pro-
vided for child event objects (Cap20OutboundEvent/
Cap2InboundEvent), this API can be extended from TCA-
POutboundEvent/ TCAPInboundEvent. An OSGi Service
Registry 214 is used to register and find specific service.
ANTLR 216 is an ASN1 parser to parse ASN1 files 218 and
generate java classes. Additionally, a TE SS7 server 220 is
provided.

The TCAP inbound/outbound Event API can organize
inbound and outbound events in a hierarchy. The two inter-
faces are defined to communicate with the event broker, one

10

15

20

25

30

35

40

45

50

55

60

65

6

for inbound events and one for outbound events. Regardless
of the particular TCAP user protocol used, a unified TCAP
event AP is exposed to applications. An empty interface can
be provided (for example, an empty “Argument” interface),
which can operate as a placeholder for all possible operations.
This can be used to distinguish between different TCAP user
protocols. For example, !nitialDP in CAP 2 can extend from
“Argument”, thus be put into a TCAPInboundEvent and sent
to applications. In accordance with an embodiment, the
TCAP event API definition refers to the standard JAIN TCAP
API. Similar naming conventions can be followed, like
InvokelndPrimitive and InvokeReqPrimitive:
“Ind”=indication(inbound), “Req”=request(outbound)

The TCAP Outbound Event Factory can be used to create
outbound events. Additionally, CAP2 and Map Outbound
event factories can be provided which include TC-user spe-
cific methods.

FIG. 3 shows the TCAP Adapter Lifecycle, in accordance
with an embodiment. At 300, the lifecycle starts. Once
started, the TCAP Adapter registers it’s TCAPProtocol-
AdapterFactory in the OSGi registry. The TCAP Adapter can
receive related context from Adapter container. At 302, the
TCAP adapter is registered and can begin the prepare phase.
At this point, the TCAP Adapter can register MBeans and
event handlers, and can listen and expose OSGi services, but
cannot start accepting traffic. At 304, the TCAP adapter is in
the Admin state and is set to be activated and start processing
traffic. At 306, the TCAP adapter is running, it can accept
traffic. At 308, the TCAP adapter is in the suspended state. At
this point the adapter is set to be deactivated, and it denies new
request but keeps handling current requests. Once the sus-
pend is complete, the TCAP adapter returns to the Admin
state where it unregisters MBeans, event handlers, and OSGi
services. It can then cleanup all resources allocated in the
prepare transition.

In accordance with an embodiment, the TCAP Adapter can
provide a plurality of functions. For example, it can interact
with the EventBroker to perform handler registration,
inbound event publishing, and outbound event handling. It
can also interaction with the TE stack to perform binding, and
receiving/sending JAIN TCAP messages; and can perform
mapping between Events and JAIN TCAP messages. The
TCAP adapter can also server as a container for TCAP user
protocol layers and provide basic TCAP FSM control.

In accordance with an embodiment, the TCAP Adapter
includes a plurality of modules. The TCAP API module,
includes the TcUserProtocolService, and is a user protocol
layer which implements the API and registers itself to the
TCAP Adapter. The TCAPAdapterImpl implements Protoco-
1Adapter, integrates with PAC, and realizes the lifecycle con-
trol. The TCAPEventHandler implements EventHandler
<TCAPOutboundEvent>, TCAPOutboundEventProcessor,
and is responsible for receiving TCAP events from the EB,
and publishing TCAP events to the EB. The TCAPEvent-
Mapping module maps between TCAPInbound/Outbound-
Event and JAIN TCAPMessages. The TE stack for TE mod-
ule implements TCAPEventlistener, and encapsulates
JAINTCAPProvider, JAINTCAPStack. This module is the
TE client implementation to communicate with the TE server,
and is responsible for binding with the TE server, and for
receiving and sending JAIN TCAP messages. The Runt-
imeMbean can be used to show statistics, stack status, and
reset connections. A configuration module uses the Configu-
rationService to configure the TE client info to TE server. The
TCAP FSM module is a lightweight FSM control (supple-
ment for TE TCAP stack) for every dialogue, e.g. Application

US 9,258,379 B2

7

context name checking and reloading, original address filling
basic call state control for TC—Begin, Tc—Continue and
Tc—end, etc

In accordance with an embodiment, a TcUserProtocolSer-
vice APl is exposed to the TC user layer to implement, then is
registered to OSGi service registry. After the TC user layer is
started, the TCAP adapter can listen to them and hold the
references.

FIG. 4 shows TCAP adapter startup, in accordance with an
embodiment. At 400 the bundle 401 is started. At 402, the
protocol adapter container (PAC) 403 discovers, creates, and
prepares the bundle. At 404, the TCAP adapter registers with
the event broker (EB) 405 and at 406 the TCAP adapter
registers with a management service 407. At 408, the CAP2
layer 409 starts and at 410 it binds with the TCAP adapter.

FIG. 5 shows publication of an outbound message, in
accordance with an embodiment. At 500, a message is
received at the TCAP stack 501. The message is processed
502 by the TCAP dialogue FSM 403 and sent 504 to the
TCAP event mapping module 505. The message is decoded
506 using the CAP2 layer 507. The message is then published
508 to the TCAP event handler 509 which publishes 510 it to
the Event Broker (EB) 511. This process is substantially
reversed for inbound messages.

In accordance with an embodiment, all normal incoming
TCAP messages are scheduled by the single TE stack thread
to keep the messages in order. That is, the TCAP adapter gets
all TCAP messages in the same TE thread. To enhance the
performance and ensure the correct order, the TCAP adapter
can collect one dialogue event and multiple component events
in the same dialogue and put them into a cache. After the last
component has arrived, it can create another thread to handle
those messages and publish them as one event. The EB does
not guarantee the order of events.

The callback operations of the TCAPEventListener are
called by different threads. A first thread, the indication event
thread, can call the process VendorIndEvent, process Com-
ponentIndEvent and process DialoguelndEvent operations
when a TCAP indication event is addressed to the listener.
There is one indication event thread for each JAINTCAPPro-
vider that the listener is added to. This thread can also call the
getUserAddress List operation. From J-TCAP R3 this thread
can also call the process TCAPError operation, but not at the
same time as the Error event thread. A second thread, the error
event thread, can call the process TCAPError operation when
an error has occurred in the JTCAP that cannot be thrown as
exception, for example errors with the connection to the
attached stack. There is one error event thread for each
JAINTCAPProvider that the listener is added to. This thread
can also call the getUserAddress List operation. Additionally,
user threads are threads that the JTCAP-user uses to call one
of the operations in the JAINTCAPProvider or the JAINT-
CAPStack. These threads can call the getUserAddress List
operation. To avoid threading problems, all data that is
updated by more than one thread in the listener, must be
thread safe. Thread safe means that the data update is atomic
or synchronized; and that no dead locks are possible.

All TCAP outbound events are scheduled by the EB in a
separate thread by a DefaultScheduler. The TCAP adapter
can handle the event within the EB’s thread space, but the
EB’s thread pool is shared between all adapters. For safe
usage, the TCAP adapter can schedule a new work thread via
a work manager of the PAC and end the EB’s thread.

In accordance with an embodiment, the TCAP User Pro-
tocol(CAP2/MAP/ . . .) layer can include a plurality of
modules. The modules support automatic generation. For
every TCAP user protocol, ASN1 files are the only input.

20

40

45

55

8

ANTLR is a powerful BNF parser, with ASN1 files and
ANTLR, implementation codes can be generated. These
codes can include Event API, the data type API called by
Event and Event Factory API; Event implementation,
encoder and decoder and Event Factory implementation;
Implementation of api Tc UserProtocolService; and RunT-
ime MBean & persistence configuration.

In accordance with an embodiment, OctetString is a spe-
cific data type in ASN1. It is a byte array, but sometimes the
value is encoded in a specific way, and the rule is described in
comments of ASN1 file. So the ASN1 parser cannot always
recognize it and automatically encode it. For these data types
a utility can be used for reliable and automatic encoding and
decoding. The utility can decode so that applications can get
a specific data object from an OCTETString(byte array); and
encode so thatapplications can get a byte array from a specific
data object.

The TCAP adapter can include a plurality of configuration
and management functions. For example, the Runtime
MBean can include a resetStackConnection, which is a
method that resets the connection towards the TE server. It
can also include an is ActiveStack method which shows the
client connection status. A listAllTcUserProtocols method
can list all registered TC user protocols names and their SSNs.
A listStatistics method can list specific SSN related statistics,
including total dialogues, total handled events. Similarly,
these statistics can be reset using a resetStatistics method.

The Cap2 layer can also include a plurality of functions.
These functions can include a register Address method which
is used to register a current SSN into the TCAP Adapter. This
method can check whether this SSN has been added by the
Configuration Service. If the SSN does not exist, then the
method will throw an exception. This method can also invoke
TCAPConfigService’s register TCAPListener(protocol-
name,ssn) method. An unregisterAddress method can be used
to unregister a TCAP Address by SSN, This method can
check whether this SSN has been removed by the Configura-
tion Service. If the SSN exists, the method will throw an
exception. This method can also invoke TCAPConfigSer-
vice’s unregisterTCAPListener(protocolname,ssn) method.
A listAlISSN method can be used to list all registered SSN in
the current protocol service. A listOperationTimer method
can list all defined OperationTimers in the current protocol
service.

In accordance with an embodiment, the mapped MBean
attributes can include an SSN list, which is a list of the SSNs
in the current protocol service. The MBean attributes can also
include a Timer List which is a list of the current TimerLists
in the current protocol service.

FIG. 6 shows an example of fail over when a TCAP adapter
shuts down, in accordance with an embodiment. TCAP
adapter fail over can depend on the TE stack’s fail over
functions. Although current dialogues will likely be lost, new
triggered dialogues can be routed into healthy nodes. A plu-
rality of application server instances 600, 602, 604 are shown,
each with their own actors 606, 608, 610 and TCAP adapters
612,614,616. At 618, actor 608 sends a TCAP messageto TE
HD node2 620. The message includes a dialogue ID. When
the TCAP adapter 614 fails or shuts down, the messages
associated with the dialogue ID are lost. After the shut down,
the actor can send out TCAP message with a new dialogue 1D,
and the new dialogue can be routed 622 to a healthy TCAP
adapter 616 in a different application server instance.

FIG. 7 shows an example of fail over when a TE stack node
shuts down, in accordance with an embodiment. A plurality of
application server instances 700, 702, 704 are shown, each
with their own actors 706, 708, 710 and TCAP adapters 712,

US 9,258,379 B2

9

714,716. At 718, actor 708 sends a TCAP message to TE HD
node2 720. The message includes a dialogue ID. At 722, the
TE node2 shuts down and the messages associated with that
dialogue ID are lost. Subsequent messages sent from the actor
are sent with a new dialogue ID, the new dialogue can then be
routed 724 to TE HD nodel 726.

SIP Adapter

In accordance with an embodiment, the application server
platform includes a session initiation protocol (SIP) adapter.
The SIP adapter uses a connection oriented protocol and
provides interactions with application code in an actor by
means of asynchronized SIP protocol events. The SIP adapter
also provides stateless node mapping to a stateful server node
hosting a specific session for the actor.

FIG. 8 shows module a diagram of the modules of a SIP
adapter, in accordance with an embodiment. The transport
layer 800 can include a plurality of sub-modules. The Proxy-
Manager 802 is a singleton utility class, which can connect to
lifecycle, configuration and other sub-modules. The SipE-
ventScheduler 804 uses the PAC provided workManager to
schedule the outbound event from app/transaction layer. The
SipEventHandler 806 can dispatch stack events in bi-side,
and take care of the connection_id attribute and transport_id
attribute in Stack events. The Parser 808 can parse the frame
from the network into a StackEvent. The UdpChannelPool
801 can pre-buffer the UDP network resources and re-use
them to dispatch outbound events. The UdpTransportModule
812 can use JDKNIO to interact with sockets. The Connec-
tionManager 814 can buffer the TCP network connections
and re-use them for receiving/sending event to network. The
ConnectionMonitor 816 can monitor for dead connections,
shut down the connections and release resources. The Tcp-
TransportModule 818 can use CENetIO 820 to interact with
sockets.

In accordance with an embodiment, for UDP transporting,
there can be one permanent thread listening for all inbound
event from pre-configured network access points. The work
manager is not used here, because this thread is time critical
and not supposed to be re-used by other modules. For TCP
transporting, the thread mode of inbound event is selected
according NetlO implementation. For both TCP and UDP
transporting, outgoing events are handled by the SipE-
ventScheduler, which relies on the PAC assigned work man-
ager to schedule the thread.

In accordance with an embodiment, the transaction layer
822 can also include a plurality of submodules. The
ActorMessage Handler 824 handles incoming/outgoing stack
events from/to protocolExtension (PE). The Transaction-
Manager 826 is a utility to create and manage server/client
SIP transactions and put them into call state object main-
tained by the Call State Manager 828. The Call State Manager
is a utility to create/retrieve/manage SIP call states. A Call-
State 830 is a storage object which includes a transaction
object, sip session object and associated states which have to
be persisted in storage service to handle fail-over. The Client-
Transaction 832 can include a protocol layer state machine of
the transactions initialized from outbound event. The Server-
Transaction 834 can include a protocol layer state machine of
transactions initialized from incoming event. The SipSession
object 836 can include several transaction objects, and can
represent a SIP dialog. The SipProxy 838 is an internal utility
class used to realize SIP proxy features. The SipEventMap-
ping 840 can be used to translate between SIP stack events
(exchanged between transport and transaction) and SIP
events (used for application). The SipEventFactory 842 is a
utility class used by application developers to create SIP
events and associated URI objects.

10

15

20

25

30

35

40

45

50

55

60

65

10

The transaction layer can be realized by means of the Actor
Protocol Context (Actor Protocol Extension), which re-uses
the actor scheduler thread, no additional thread mode is intro-
duced.

FIG. 9 shows a diagram of lifecycle and integration with
PAC, in accordance with an embodiment. At the transition
from idle 900 to prepared 902, a configuration API is initial-
ized, atransaction layer/event factory is registered to the actor
protocol context, associated utilities are instantiated and the
transport is connected to the event broker. When the SIP
adapter transitions from prepared to active 904, it starts lis-
tening on socket (UDP), initializes NetlO (TCP), and starts
transport server runtime. When transitioning from active to
suspending 906, the SIP adapter rejects all new initial events
and waits for existing connections to terminate. When tran-
sitioning from suspending to prepared, the SIP adapter shuts
down the socket and stops transport runtime. And when
returning to idle from prepared, the SIP adapter unregisters
the transaction layer/event factory from the actor protocol
context, unregisters runtime Mbeans and disconnects trans-
port with the event broker.

FIG. 10 illustrates the architecture and layer behavior of an
SIP adapter, in accordance with an embodiment. Runtime
Mbeans 1000 are registered to an Mbean server and read-only
from the Administrator perspective, they show SIP adapter
runtime statistics. These can include NetworkChannel Statis-
tics and SIP transaction statistics. The NetworkChannel] sta-
tistics can show the channel name of network accesspoint, the
protocol this network accesspoint should use for connections,
the number of active connections and sockets associated, the
number of messages received, the number of messages sent,
the number of messages rejected, the total number of bytes
received, and the total number of bytes sent. The Sip Trans-
action Statistics can show the total number of active actors
contain sip transaction object, the total number of active sip
sessions, the total number of destroyed actors contain sip
transaction object, the total number of destroyed sip sessions,
the number of messages received, and the number of mes-
sages sent.

The Configuration MBeans 1002 can include a plurality of
configuration items which are configured means of JAXB
POJO 1004 provided by configuration service and repre-
sented as Mbeans automatically. They are read-write from
administrator’s perspective. The configuration MBeans can
include the name of this network accesspoint. The configu-
ration Mbeans can indicate which managed server this net-
work accesspoint is applied to. A value of null indicates that
it is applied to whole domain. The configuration Mbeans can
also include the protocol this network channel should use for
connections, and the IP address or DNSname this network
channel uses to listen for incoming connections. A value of
null indicates that all network interface will be listened. The
ListenAddress_Port indicates the default TCP port this net-
work accesspoint uses to listen for regular (non-SSL) incom-
ing connections. Minimum value: 1, Maximum value: 65535.
The ListenAddress_Address Type indicates the address type
(e.g., internet) and the ListenAddress_NetworkType indi-
cates the network type (e.g., IP4). The Externall.istenAd-
dress_Host indicates the IP address or DNSname represent-
ing the external identity of this network channel. A value of
null indicates that the network channel’s Listen Address is
also its external address. This is required for the configura-
tions which need to cross a firewall doing Network Address
Translation. The Externall.istenAddress_Port is the exter-
nally published listen port for this network accesspoint. Mini-
mum value: 1, Maximum value: 65535. The ExternalLis-
tenAddress_Address Type and Externall.istenAddress_

US 9,258,379 B2

11

NetworkType: indicate the address and network type similar
to the ListenAddress parameters.

The Complete Message Timeout indicates the maximum
amount of time this network accesspoint waits for a complete
message to be received. A value of 0 disables network acces-
spoint complete message timeout. This timeout helps guard
against denial of service attacks in which a caller indicates
that they will be sending a message of a certain size which
they never finish sending. Minimum value: 0 s Maximum
value: 480 s. The Idle Connection Timeout indicates the
maximum amount of time (in seconds) that a connection is
allowed to be idle before it is closed by this network access-
point. This timeout helps guard against server deadlock
through too many open connections. Minimum value: O s.
The Maximum Message Size indicates the maximum mes-
sage size allowable in a message header. This maximum
attempts to prevent a denial of service attack whereby a caller
attempts to force the server to allocate more memory than is
available thereby keeping the server from responding quickly
to other requests. Minimum value: 4096 bytes Maximum
value: 100000000 bytes. The Maximum Connected Clients
indicates the maximum number of clients that can be con-
nected on this network accesspoint.

In accordance with an embodiment, the SIP server can
include a plurality of elements.

The T1 Timeout Interval represents the duration of the SIP
protocol T1 timer, in milliseconds. Timer T1 also specifies the
initial values of Timers A, E, and G, which control the retrans-
mit interval for INVITE requests and responses over UDP.
Timer T1 affects the values of timers F, H, and J, which
control retransmit intervals for INVITE responses and
requests; these timers are set to a value of 64 T1 milliseconds.
The default is 500 ms.

The T2 Timeout Interval represents the duration of the SIP
protocol T2 timer, in milliseconds. Timer T2 defines the
retransmit interval for INVITE responses and non-INVITE
requests. The default is 4 s.

The T4 Timeout Interval represents the duration of the SIP
protocol T4 timer, in milliseconds. Timer T4 specifies the
maximum length of time that a message remains in the net-
work. Timer T4 also specifies the initial values of Timers I and
K, which control the wait times for retransmitting ACKs and
responses over UDP. The default is 5 s.

The Timer B Timeout Interval represents the duration of
the SIP protocol Timer B, in milliseconds. Timer B specifies
the length of time a client transaction attempts to retry send-
ing a request. [fthe Timer B value is not configured, the server
derives a value from timer T1 (64 T1, or 32000 milliseconds
by default). The Timer F Timeout Interval represents the
duration of the SIP protocol Timer F, in milliseconds. Timer
F specifies the timeout interval for retransmitting non-IN-
VITE requests. If the Timer F value is not configured, the
server derives a value from timer T 1 (64 T1, or 32000 milli-
seconds by default).

In accordance with an embodiment, the Server Header
Insertion specifies the conditions for inserting a Server header
into SIP messages. Use this attribute to limit or eliminate
Server headers to reduce the message size for mobile net-
works, or to increase security. By default, SIP Server inserts
no Server header into SIP messages. The Server Header Value
specifies the value of the Server header inserted into SIP
messages. The SIP Server enables an administrator to control
the text that is inserted into the Server header of generated
messages. This provides additional control over the size of
SIP messages and also enables you to mask the server entity
for security purposes. To configure the header contents, the
administrator can enter a string value. By default, SIP Server

20

25

30

40

45

55

12

does not insert a Server header into generated SIP messages.
If Server Header Insertion is enabled but no Server Header-
value is specified, SIP Server inserts a default value.

In accordance with an embodiment, the Default Form for
Header Insertion specifies how the server applies rules for
compacting SIP message headers. This element configures
the server-wide, default behavior for using or preserving
compact headers in SIP messages. This element can be set to
one of several different values. When set to compact:, the Sip
Adapter uses the compact form for all system-generated
headers. However, any headers that are copied from an origi-
nating message (rather than generated) use their original
form. When set to force compact, the Sip Adapter uses the
compact form for all headers, converting long headers in
existing messages into compact headers as necessary. When
set to long, the Sip Adapter uses the long form for all system-
generated headers. However, any headers that are copied
from an originating message (rather than generated) use their
original form. When setto force long, the Sip Adapter uses the
long form for all headers, converting compact headers in
existing messages into long headers as necessary.

The Enable DNSServer Lookup element specifies whether
the server performs DNS lookup. If this attribute is set to
“true,” then the server can use DNS to: Discover a proxy
server’s transport, IP address, and port number when a
request is sent to a SIP URI. Resolve an IP address and/or port
number during response routing, depending on the contents
of'the Sent-by field. For proxy discovery, Falcon Sip Adapter
uses DNS resolution only once per SIP transaction to deter-
mine transport, IP, and port number information. All retrans-
missions, ACKs, or CANCEL requests are delivered to the
same address and port using the same transport. When a proxy
needs to send a response message, the Sip Adapter uses DNS
lookup to determine the IP address and/or port number of the
destination, depending on the information provided in the
sent-by field and via header. By default, DNS resolution is not
used (“false”). Note: Because DNS resolution is performed
within the context of SIP message processing, any DNS per-
formance problems result in increased latency performance.
It is recommended to use a caching DNS server in a produc-
tion environment to minimize potential performance prob-
lems.

The Enable Contact Header For Non-Reliable Provisional
(1xx) Response element specifies whether the server puts
Contact Header in a non-reliable provisional(1xx) response
having a To tag. This is not applicable for 100 and possible
values are true and false. If this attribute is set to “true,” then
the server puts a Contact header. The Globally Routable URI
is a Globally-Routable User Agent URI (GRUU) that the Sip
Adapter automatically inserts into Contact and Route-Set
headers when communicating with network elements. The
URI specified in this element should be the GRUU for the
entire Falcon Sip Adapter cluster. In a single server domain,
specify a GRUU for the server itself. Note that User Agents
(UAs) deployed on the Sip Adapter typically obtain GRUUs
via a registration request. In this case, the application code is
responsible both for requesting and subsequently handling
the GRUU. To request a GRUU the UA would include the
“+sip.instance” Contact header field parameter in each Con-
tact for which GRUU is required. Upon receiving a GRUU,
the UA would use the GRUU as the URI for the contact header
field when generating new requests. The Enable RPort ele-
ment specifies whether symmetric response routing is
requested (via the rport parameter) for requests generated by
Kendo SIP Adapter. When this option is enabled, symmetric
response routing is in effect.

US 9,258,379 B2

13

In accordance with an embodiment, a Route Header can
push a default route header on initial requests if no route
header is specified. This is used for S-CSCFURI. Message
debugging can be enabled/disabled using the Enable Debug
element. By default, message debugging is off (false). The
debug level can be set to include a predefined collection of
information to log for each SIP request and response. These
predefined collections can include terse, which logs only the
domain setting, logging level, and whether or not the message
is anincoming message; basic, which logs the terse items plus
the SIP message status, reason phrase, the type of response or
request, the SIP method, the From header, and the To header;
and full, which logs the basic items plus all SIP message
headers plus the timestamp, protocol, request URI, request
type, response type, content type, and raw content.

In accordance with an embodiment, if connection pools are
utilized the Pool Name, Destination Host, Destination Port,
and Maximum Connections can be specified. SipEvents
include the attribute connection_id and node_id (adapter_id).
At least for reliable transports such as TCP, the sip stack sends
responses back according to the connection which the asso-
ciated request of same transaction comes in. SipEvents
include the attribute SESSION_ID (callld), Therefore regard-
less of which connection and which node a SIP event comes
in, it will be forwarded to one actor by the eventbroker as long
as the actor registered the dialog. The CallState of one actor is
persisted into the storage service of an actor by protocolEx-
tension, so that the transaction state and call state could sur-
vive by actor failing over.

In accordance with an embodiment, SIP-aware actors can
implement a SIPProtocolBinding interface to get one
instance of an SipEventFactory, which can be called back in
anon Bind() method, between actor.start() and actor.resume(

In accordance with an embodiment, a SipInboundEvent-
Processor is provided. The SIP inbound event processor is a
utility to provide strong-typed event dispatching. The SipE-
ventFactory is a factory class to create sip outbound event
according the inbound event. SIP events are mapped to dif-
ferent event classes according request type in RFC. There is a
SipDialogTerminated event, to provide application develop-
ers one notification that an SIP dialog (session) has been
terminated, without knowing detail of SIP call flows. It is
useful when terminating a dialog associated with one or more
actors. This event can be used to efficiently and safely per-
form actor clean-up, including shutdown actor and/or un-
register dialog. A best practice is to take advantage of Sip-
DialogTerminated event. The system can automatically
generate this event and dispatch it to applications when all
SIP transactions within a SIP dialog are terminated. The
application can listen for this event and make associated
clean-up during the events’ call back, without having to take
care of the resource issues in signaling FSM. Two useful
methods available in this event include getCallld() which can
be used to identify which dialog is terminated, and getRem-
ainingDialogCount() which can be used to know how many
ongoing dialogues are still pending by the time this event is
generated.

Actor Protocol Context

In accordance with various embodiments, the protocol spe-
cific state information is transactionally maintained on the
application server on behalf of application programmable
units. In accordance with an embodiment, the protocol spe-
cific state is maintained transparent to user code. The protocol
context includes a suite of APIs to provide more flexibilities
for the application developers to program protocol associated
applications, as well as a framework to provide protocol

5

10

15

20

25

30

35

40

45

50

55

60

65

14

adapter developers an opportunity to decorate and validate
the protocol events within the context of an actor to make a
stateful protocol stack.

Protocol extension enables one abstract class to be regis-
tered to an actor framework to decorate an event to/from the
actor. PE is designed to be as transparent as possible to appli-
cation logic. Protocol extension (PE) is used to be the deco-
rator to hook the incoming/outgoing event from/to the actor.
Incoming/outgoing events can reject PE and the PE author
can decide to filter events or reject events including by imple-
menting a callback and returning a different direction of
events. The framework supports decorating events in the
same direction, and returning inbound events for outbound
events, as well as returning multiple events in different direc-
tions.

In accordance with an embodiment, PE is notified when an
event fails to dispatch. A PE implementation can choose to
return the passed event after handling and give an actor an
opportunity to review the event, or return null so that actor
will not receive it anymore (useful when a event is generated
by the PE itself). It is also possible to start timer in PE. The
timerEvent scheduled by PE will not reject the actor but the
PE itself, therefore the PE layer timer and application layer
timer are isolated. If multiple timers are scheduled, they can
be distinguished using event callbacks.

In accordance with an embodiment, one PE instance is
created per actor instance. When an actor is started, a PE is
started. Similarly, when an actor is revived, a PE is created.
When an actor is shutdown, e.g., when an application calls
actorLifecycle.suspend() the PE makes a final garbage col-
lection and notifies the framework of the shutdown by calling
CompletionBarrier.complete(). If the framework does not
receive CompletionBarrier.complete() in a specified period,
a force stop method can be called to give the PE a chance to
make forceful finalizing. When an actor is migrated, the PE
can finalize local variables which are not supposed to survive
during action migration, and change some run time statistics
if required.

In some cases the actor and PE are not supposed to stop
work immediately when application decide to shutdown the
actor. Therefore the framework will wait to stop the actor, and
thus wait to call actor.suspend() until the PE notifies the
framework that suspending work of PE is finished. As long as
CompletionBarrier?.getCallback() is called in on Suspend()
the system will assume a delayed shutdown and wait for the
complete notification to finalize other resources. If PE can
make sure all the finalize work is already finished in on
Suspend() it can either explicitly call CompletionBarrier-
?.getCallback() completed() or not take any action on
Completion Barrier?. The framework will recognize the two
cases and consider the PE suspend completed without waiting
for a complete notification. This will destroy actor resources
immediately.

In accordance with an embodiment, a PE developer can
choose to write persistence data into Coherence (such as FSM
state which needs to be durable when failing-over/migration).

In accordance with an embodiment, an opened OSGI ser-
vice of the actor framework can be used when registering a
PE. There are two ways to registering a PE. Using OSGi API,
protocolName is identical to the attribute ATTRIBUTE_
PROTOCOL_NAME in ProtocolEvent?. The framework
relies on the parameter protocolName to identify whether a
PE is triggered for a specified protocolEvent. Using Declara-
tive APC, by declaring a PE class name in meta-data, the actor
framework will auto-recognize it and register it automati-
cally. In this case, the Protocolname? has to be defined as an
annotation of ProtocolExtension? class.

US 9,258,379 B2

15

FIG. 11 shows a protocol router, in accordance with an
embodiment. A protocol router is used in the “bootstrap”
actor (or, router actor) to dispatch an initial event to session
handling actors. It could be explicitly registered and unregis-
tered to an actorContext. It can provide a best practice to
dispatch the event and load of signaling. As shown in FIG. 11,
a router actor 1100 can be established to dispatch an initial
event to different session handling actors 1102, 1104, 1106.
These session handling actors can be created by the router
actor, or created by any other means. Each session handling
actor can then communicate with the event broker 1108. A
router handler is registered before it can be used. This regis-
tration can be performed similarly to registering an
eventHandler for an inbound event. An application can reg-
ister a router via a specified router criteria for each protocol,
and overriding the protocol router criteria to have more load
dispatching mechanism according the application context.

FIG. 12 illustrates the usage of protocol binding and pro-
tocol consumer 1212, in accordance with an embodiment.
The framework can provide a shortcut to get a protocol’s
event factory instance 1200, 1202. The protocol binding inter-
face 1204 is not recommended to be used directly by appli-
cations, each protocol adapter can provide a protocol-speci-
fied ProtocolBinding? to applications, once an application
wants to get an instance of that protocol’s event factory, it
implements the protocol-specified binding to get the event
factory instance in an on Bind() callback 1206, 1208,
1210, which is called after actor.start() but before actor.re-
sume()actor.revive(). The framework also relies on the pro-
tocol name information in ProtocolBinding to trigger Proto-
colExtension. One actor utilize multiple protocols (e.g. Sip
and Diameter). In this case implementing one ProtocolBind-
ing may not be sufficient, and ProtocolConsumer 1212 could
help on this. Using ProtocolConsumer one could get an array
of callBacks in ProtocolBindings. Although ProtocolCon-
sumer 1212could be used for only one protocol, it is more
complicated compared with ProtocolBinding 1204, so it is
recommended for use in the multiple protocol case.

Throughout the various contexts described in this disclo-
sure, the embodiments of the invention further encompass
computer apparatus, computing systems and machine-read-
able media configured to carry out the foregoing systems and
methods. In addition to an embodiment consisting of specifi-
cally designed integrated circuits or other electronics, the
present invention may be conveniently implemented using a
conventional general purpose or a specialized digital com-
puter or microprocessor programmed according to the teach-
ings of the present disclosure, as will be apparent to those
skilled in the computer art.

Appropriate software coding can readily be prepared by
skilled programmers based on the teachings of the present
disclosure, as will be apparent to those skilled in the software
art. The invention may also be implemented by the prepara-
tion of application specific integrated circuits or by intercon-
necting an appropriate network of conventional component
circuits, as will be readily apparent to those skilled in the art.

The various embodiments include a computer program
product which is a storage medium (media) having instruc-
tions stored thereon/in which can be used to program a gen-
eral purpose or specialized computing processor(s)/device(s)
to perform any of the features presented herein. The storage
medium can include, but is not limited to, one or more of the
following: any type of physical media including floppy disks,
optical discs, DVDs, CD-ROMs, microdrives, magneto-opti-
cal disks, holographic storage, ROMs, RAMs, PRAMS,
EPROMs, EEPROMs, DRAMs, VRAMs, flash memory
devices, magnetic or optical cards, nanosystems (including

10

15

20

25

30

35

40

45

50

55

60

65

16

molecular memory ICs); paper or paper-based media; and any
type of media or device suitable for storing instructions and/
or information. The computer program product can be trans-
mitted in whole or in parts and over one or more public and/or
private networks wherein the transmission includes instruc-
tions which can be used by one or more processors to perform
any of the features presented herein. The transmission may
include a plurality of separate transmissions. In accordance
with certain embodiments, however, the computer storage
medium containing the instructions is non-transitory (i.e. not
in the process of being transmitted) but rather is persisted on
a physical device.

The foregoing description of the preferred embodiments of
the present invention has been provided for purposes of illus-
tration and description. It is not intended to be exhaustive or
to limit the invention to the precise forms disclosed. Many
modifications and variations can be apparent to the practitio-
ner skilled in the art. Embodiments were chosen and
described in order to best explain the principles of the inven-
tion and its practical application, thereby enabling others
skilled in the relevant art to understand the invention. It is
intended that the scope of the invention be defined by the
following claims and their equivalents.

What is claimed is:

1. A system comprising:

a session initiation protocol (SIP) adapter, wherein the SIP
adapter implements connection oriented protocols and
mediates interactions with application code in an appli-
cation server;,

wherein said SIP adapter comprises
aplurality of transport modules which receive a plurality

of SIP messages associated with a plurality of calls in
a telecommunications network and received via said
connection oriented protocols over a plurality of con-
nections,

a parser which parses frames from said plurality of SIP
communications and generates SIP stack events
responsive to said SIP communications wherein each
SIP stack event includes a connection id attribute
corresponding to one of said plurality of connections,
and

an SIP event handler which dispatches said SIP stack
events to an event broker;

aplurality of stateful sever nodes each comprising a micro-
processor and a memory;

a plurality of call state objects hosted on the plurality of
stateful server nodes, each of said plurality of call state
objects corresponding to one of said plurality of calls;

a plurality of actors wherein each actor owns one of said
plurality of call state objects and wherein each actor
comprises application code for handling the call associ-
ated with the call state object owned by the actor;

wherein each of said plurality of call state objects com-
prises a transaction state object which includes a proto-
col layer state machine of a transaction of the call asso-
ciated with the call state object; and

an actor message handler which communicates said SIP
stack events from the event broker to said plurality of
call state objects;

whereby the SIP adapter provides stateless node mapping
of said SIP messages and said SIP stack events to said
plurality of stateful server nodes hosting said plurality of
call state objects corresponding to said plurality of calls
and said plurality of actors associated with said plurality
of call state objects.

US 9,258,379 B2

17

2. The system of claim 1 wherein actor call state of an actor
is persisted into the call state object owned by the actor by a
protocol extension.

3. The system of claim 2 wherein one protocol extension
instance is created per actor.

4. The system of claim 1 wherein actor call state of an actor
is persisted into the call state object owned by the actor by a
protocol extension to support survival of actor call state by
actor failover.

5. The system of claim 1 wherein each of said plurality of
call state objects comprises a SIP session object representing
an SIP dialog.

6. The system of claim 1, further comprising a call state
manager which manages said plurality of call state objects.

7. The system of claim 1, further comprising a Transaction
Manager used to create and manage server/client SIP trans-
actions and put the SIP transactions into a call state object of
the plurality of call state objects.

8. A method comprising:

providing a session initiation protocol (SIP) adapter,

wherein the SIP adapter implements connection ori-
ented protocols and mediates interactions with applica-
tion code in an application server, and wherein said SIP
adapter comprises a plurality of transport modules, a
parser and an SIP event handler;

receiving with said plurality of transport modules a plural-

ity of SIP messages associated with a plurality of calls in
a telecommunications network and received via said
connection oriented protocols over a plurality of con-
nections;

using said parser to parse frames from said plurality of SIP

communications and generate SIP stack events respon-
sive to said SIP communications wherein each SIP stack
event includes a connection_id attribute corresponding
to one of said plurality of connections, using said SIP
event handler to dispatch said SIP stack events to an
event broker;

providing a plurality of call state objects hosted on a plu-

rality of stateful server nodes, each of said plurality of
call state objects corresponding to one of said plurality
of calls;
providing a plurality of actors wherein each actor owns one
of said plurality of call state objects and wherein each
actor comprises application code for handling the call
associated with the call state object owned by the actor;

providing a transaction state object in each of said call state
objects wherein the transaction state object includes a
protocol layer state machine of a transaction of the call
associated with the call state object; and

communicating said SIP stack events from the event broker
to said plurality of call state objects using an actor mes-
sage handler;

whereby the SIP adapter provides stateless node mapping

of said SIP messages and said SIP stack events to said
plurality of stateful server nodes hosting said plurality of
call state objects corresponding to said plurality of calls
and said plurality of actors associated with said plurality
of call state objects.

9. The method of claim 8, further comprising persisting
actor call state of an actor into the call state object owned by
the actor using a protocol extension.

10. The method of claim 9, further comprising creating one
protocol extension instance per actor.

11. The method of claim 8, further comprising persisting
actor call state of an actor is persisted into the call state object
owned by the actor using a protocol extension to support
survival of actor call state by actor failover.

10

20

25

30

35

40

45

50

55

60

65

18

12. The method of claim 8, wherein each of said plurality of
call state objects comprises a SIP session object representing
an SIP dialog.

13. The method of claim 8, further comprising providing a
call state manager to manage said plurality of call state
objects.

14. The method of claim 8, providing a Transaction Man-
ager to create and manage server/client SIP transactions and
put said server/client SIP transactions into a call state object
of the plurality of call state objects.

15. A non-transitory computer readable medium having
instructions stored thereon, which instructions, when
executed, cause a computer system to perform steps compris-
ing:

providing a session initiation protocol (SIP) adapter,

wherein the SIP adapter implements connection ori-
ented protocols and mediates interactions with applica-
tion code in an application server, and wherein said SIP
adapter comprises a plurality of transport modules, a
parser and an SIP event handler;

receiving with said plurality of transport modules a plural-

ity of SIP messages associated with a plurality of calls in
a telecommunications network and received via said
connection oriented protocols over a plurality of con-
nections;

using said parser to parse frames from said plurality of SIP

communications and generate SIP stack events respon-
sive to said SIP communications wherein each SIP stack
event includes a connection_id attribute corresponding
to one of said plurality of connections, using said SIP
event handler to dispatch said SIP stack events to an
event broker;

providing a plurality of call state objects hosted on a plu-

rality of stateful server nodes, each of said plurality of
call state objects corresponding to one of said plurality
of calls;
providing a plurality of actors wherein each actor owns one
of said plurality of call state objects and wherein each
actor comprises application code for handling the call
associated with the call state object owned by the actor;

providing a transaction state object in each of said call state
objects wherein the transaction state object includes a
protocol layer state machine of a transaction of the call
associated with the call state object; and

communicating said SIP stack events from the event broker
to said plurality of call state objects using an actor mes-
sage handler;

whereby the SIP adapter provides stateless node mapping

of said SIP messages and said SIP stack events to said
plurality of stateful server nodes hosting said plurality of
call state objects corresponding to said plurality of calls
and said plurality of actors associated with said plurality
of call state objects.

16. The non-transitory computer readable medium of claim
15 having further instructions stored thereon, which further
instructions, when executed, cause a computer system to per-
form further steps comprising:

creating one protocol extension instance for each actor;

persisting actor call state of each actor into the call state

object owned by each actor using the protocol extension
created for each actor; and

supporting survival of actor call state by actor failover.

17. The non-transitory computer readable medium of claim
15, wherein each of said plurality of call state objects com-
prises a SIP session object representing an SIP dialog.

18. The non-transitory computer readable medium of claim
15 having further instructions stored thereon, which further

US 9,258,379 B2

19

instructions, when executed, cause a computer system to per-
form further steps comprising:

providing a call state manager to manage said plurality of

call state objects.

19. The non-transitory computer readable medium of claim
15 having further instructions stored thereon, which further
instructions, when executed, cause a computer system to per-
form further steps comprising:

providing a Transaction Manager to create and manage

server/client SIP transactions and put said server/client
SIP transactions into each call state object of the plural-
ity of call state objects.

20. The non-transitory computer readable medium of claim
15 having further instructions stored thereon, which further
instructions, when executed, cause a computer system to per-
form further steps comprising:

providing a call state manager to manage said plurality of

call state objects; and

providing a Transaction Manager to create and manage

server/client SIP transactions and put said server/client
SIP transactions into each call state object of the plural-
ity of call state objects.

#* #* #* #* #*

20

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 19,258,379 B2 Page 1of3
APPLICATION NO. : 13/339300

DATED : February 9, 2016

INVENTOR(S) : Jansson et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On title page figure, under Reference Numeral 102, line 1, delete “OSGI” and insert -- OSGi --,
therefor.

In drawings,

On sheet 1 of 8, in FIGURE 1, under Reference Numeral 102, line 1, delete “OSGI” and insert
-- OSGi --, therefor.

On sheet 4 of 8, in FIGURE 5, under Reference Numeral 507, line 1, delete “Cap 2 and insert
-- CAP2 --, therefor.

In specification,

In column 1, line 28, delete “2011 ;” and insert -- 2011; --, therefor.
In column 1, line 31, delete “2011 ;” and insert -- 2011; --, therefor.
In column 3, line 66, delete “eg.” and insert -- e.g. --, therefor.

In column 4, line 29, delete “OSGI” and insert -- OSGi --, therefor.
In column 4, line 33, delete “OSGI” and insert -- OSGi --, therefor.
In column 4, line 37, delete “OSGI” and insert -- OSGi --, therefor.
In column 6, line 7, delete “CAP 2” and insert -- CAP2 --, therefor.

In column 6, line 13, after “(outbound)” insert -- . --,

Signed and Sealed this
Eighteenth Day of October, 2016

Dectatle X Loa

Michelle K. Lee
Director of the United States Patent and Trademark Office

CERTIFICATE OF CORRECTION (continued) Page 2 of 3
U.S. Pat. No. 9,258,379 B2

In specification,

In column 6, line 44, delete “server” and insert -- serve --, therefor.

In column 7, line 3, after “etc” insert -- . --.

In column &, line 9, delete “ASN1 .” and insert -- ASN1. --, therefor.

In column &, line 22, delete “is ActiveStack™ and insert -- isActiveStack --, therefor.
In column 8, line 60, delete “shut down,” and insert -- shutdown, --, therefor.

In column 9, line 32, delete “shut down™ and insert -- shutdown --, therefor.

In column 12, line 9, delete “compact:,” and insert -- compact, --, therefor.

In column 13, line 33, delete “on Bind()” and insert -- onBind() --, therefor.

In column 13, line 24, delete “getCallld()” and insert -- getCallld(), --, therefor.

In column 13, line 56, delete “Count()” and insert -- Count(), --, therefor.

In column 14, line 30, delete “suspend()” and insert -- suspend(), --, therefor.

In column 14, line 42, delete “suspend()” and insert -- suspend(), --, therefor.

In column 14, line 44, delete “onSuspend()” and insert -- onSuspend(), --, therefor.

In column 14, line 47-48, delete “onSuspend()” and insert -- onSuspend(), --, therefor.
In column 14, line 49, delete “Callback()” and insert -- Callback(). --, therefor.

In column 14, line 50, delete “Completion Barrier?.” and insert -- CompletionBarrier?. --, therefor.
In column 14, line 57, delete “OSGI” and insert -- OSGi --, therefor.

In column 15, line 24, delete “ProtocolBinding?” and insert -- ProtocolBinding --, therefor.
In column 15, line 24, delete “applications,” and insert -- applications. --, therefor.

In column 15, line 24, delete “once™ and insert -- Once --, therefor.

In column 15, line 27, delete “on Bind()” and insert -- onBind() --, therefor.

In column 15. line 28. delete ““actor.start(Y’ and insert -- actor.start(). --. therefor.

CERTIFICATE OF CORRECTION (continued) Page 3 of 3
U.S. Pat. No. 9,258,379 B2

In specification,

In column 15, line 28-29, delete “actor.resume()actor.revive().” and insert
-- actor.resume()/actor.revive(). --, therefor.

In column 15, line 30, before “to” insert -- 1204 --,

In column 15, line 31, after “actor” insert -- can --.

In column 15, line 31, delete “Sip” and insert -- SIP --, therefor.

In column 15, line 33, before “may” insert -- 1204 --,

In column 15, line 36, delete “1212could” and insert -- 1212 could --, therefor.
In claims,

In column 16, line 41, in claim 1, delete “connection id” and insert -- connection_id --, therefor.

